Grundig SAT Systems

06 Kas 2013

Optik Lnb Nedir?

Optik LNB’nin avantajları Optik LNB’nin en büyük avantajı, her dört bant/polarizasyon kombinasyonunun tek bir kabloyla aynı anda taşınabilmesi. Yani, sinyali kaç kere istiyorsanız o kadar bölebilirsiniz ve her uç diğerlerinden tamamen bağımsız olarak kullanılabilir. Diğer önemli bir bonus da fiber-optik kablolarla dikkate değer hiçbir sinyal kaybı olmadan istediğiniz kadar uzun mesafelere sinyal taşıyabilirsiniz. Fiber optik kablolar, küçük çapları sayesinde tüm kablo yataklarına rahatça yerleştirilebilir. Son derece düşük sinyal kaybı sayesinde, kalite söz konusu olduğunda uzun mesafelerde koaksiyel kabloyla karşılaştırılamayacak kadar iyi sonuç veriyor. Zayıf sinyallerde, böyle bir farklılık sinyali almamanıza bile yol açabilir. Birkaç kilometreye kadar uzayan mesafelere sinyal kaybından korkmadan hat çekebilirsiniz.

LNB (Low Noise Block Converter-Düşük Gürültü Dönüştürücü Bloku) bir uydu çanağının odağından yansıyarak gelen TV sinyallerini toplayıp alan ve uydu alıcısının anlayacağı dile dönüştüren bir aparattır.

Her uydudan değişik TV kanalları gelmektedir, eğer bir kaç uydudan gelen TV kanallarını almak isterseniz, fazla bir seçeneğimiz yoktur. Ya her uyduya bakan bir çanak kurmalıyız ya da kurulu olan çanağımızdan daha fazla verim almak için çoklu lnb (multifeed) çözümüne gitmemiz gerekir.

İlk seçenek masraflı bir seçenek olup, her uyduya bakan yeni bir çanak kurulumunu gerektirmektedir. İkinci seçenekte ise genelde ucuz ama yayın almada sorunlu ve sınırlı LNB tutacakları kullanılmaktadır.

Aşağıdaki örneklerde ucuz ama sıkıntılı çözümler gösterilmektedir.

muticonnect_01

Multi-Connect, yeni kurulacak veya daha önceden kurulmuş her standart çanak ile birden çok uydudan sinyal (TV kanalı) alabilmek için tasarlanmış yenilikçi bir sistemdir.

Varolan çanak kurulumları için: Önceden kurulmuş, tek LNB tutan, çanağınızı kullanmayı sürdürerek çoklu uydu yayınlarını alabilecek MultiConnect sistemine terfi edebilirsiniz.

Yeni kurulumlarda MultiConnect sayesinde her uydu için ayrı bir çanak ve LNB satın almanız gerekmiyecek.

Sisteminizi MultiConnect sistemine yükseltmek için var olan çanağınızı (günümüzde neredeyse her evde en az bir çanak bulunmaktadır) kullanarak ciddi bir ekonomi gerçekleştirebileceksiniz. Ekolojik kirliliği atlasak bile, en azından görüntü kirliliğinin önüne geçebileceksiniz.

MultiConnect çözümü, teknik olarak karmaşık olan tüm tün bu detayları ve beraberlerinde gelen sorunsalları hesaplarına dahil eder. Sistemin tasarımındaki yenilik, her LNB nin arkasındaki çok tarafa ve değişik açılara hareket imkanı sunan mekanizmada yatmaktadır. Bu mekanizma sayesinde her hangi bir LNB, sistemin yapısal taşıyıcısı olur ve diğer her LNB ile de 8 değişik yönde hareket ederek(örneğin, aşşağı/yukarı, metal kızakta sol/sağ, tek başına LNB nin sol/saga dönmesi, odak aksında sol/sağ, merkez LNB ile tüm sistemi ileri/geri götürebilme) çanağınızda en ince ayarlarların yapılması ile birçok uydudan maksimum verim almanızı sağlar.

muticonnect_02

Sistemin tümünü 3 civata ile kurabilirsiniz, bu civataları sadece gevşeterek istenilen uydu pozisyonunu ve bu uydudan alınabilecek en güçlü sinyal performansı için LNB nizin pozisyonunu bulmanızı sağlar. Tüm kurulum sürecinde başka malzemeye ihtiyacınız olmayacaktır.

muticonnect_03

İşin teknolojik kısmında ise, sistemdeki LNB’ ler gelişmiş dielektrik malzemelerin bileşimi ile kompakt ince besleme teknolojisini kullanmaktadır. LNB’ lerin İnce beslemesi(dar boyunu) sayesinde birbirlerine çok yaklaşabilmektedirler. Orbitsel pozisyonları yüzünden birbirlerine çok yakın olan uyduları klasik boyunlu lnbler ile alamazsınız. Aralarında 3 derece yakın olan uydular, multifeed sisteminde çanağınıza rahatlıkla gelecektir.

unicable_lnb_01

Uydu sinyallerini son kullanıcının alıcısına kadar ulaştırmak hep zor olmuştur. Çünkü uydudan alınabilen kanalların çok olması, ve dolayısıyla sinyallerin bant genişliğinin fazla oluşu çatının üstündeki çanaktan bu sinyalleri eve taşımayı güçleştirmektedir. Bunun yanısıra dijital video kayıt cihazları (DVR) kullanımlarının artması da işin karmaşıklığını arttırmıştır. Örneğin düşey/yatay, alt/üst bant şeklinde dört polarite halinde alınan sinyaller alıcı cihazdan LNB’ye komuta edilerek sadece seçilen polaritedeki yayınlar gönderilmekte idi. Oysa kullanıcı bir polaritedeki yayını kaydederken (DVR) diğerini izlemesi mümkün değildi. (Bu durumda aşağıya birden çok kablo indirmek ve karmaşık bir enstelasyon düzeneği ve kullanma zorluğu söz konusudur.)

İşte “Unicable teteknolojisi” ile getirilen ve SCR(Single Channel Router) kısaltmasıyla da sıkça karşılaştığımız uygulama bu sorunlara çözüm getirmek üzere geliştirilmiştir. Bu sistem adından da anlaşılacağı gibi “tek kablolu” bir çözüm.

Pahalı çift tünerli ve PVR’li STB alıcı cihazların ve birden çok alıcıya sinyal dağıtılması durumunun gerektirdiği çok kabloluluk bu sistemle “tek kablo ile” çözümlenmektedir.

Şimdi “UniCable LNB” (SCR LNB) çözümleri ile herhangi “özel uygulama” gerektirmeden tek kabloya geçilebilmektedir. UniCable sistemi yazılım ve donanımdan oluşan tümleşik bir çözümdür. SCR LNB ile bu sisteme uyumlu uydu alıcı veya dijital kayıt cihazları ile kullanılması gerekir. Bu özellik bu LNB’nin bağlanacağı alıcı cihazda yeralan yazılımla sağlanmakta, cihazda hiçbir donanım değişikliği gerekmemektedir. (Uyumlandırma işi herhangi alıcı cihaza uydudan yazılım yüklenerek(OTA) da yapılabilmektedir.)

Kurulu bir sistem çanaktaki LNB (SCR/Unicable olanı ile) değiştirilerek ve alıcı cihazın yazılımı yükseltilerek “”tek kablolu”” hale getirilebilir. Eskiden mevcut tüm cihazlarla uyumludur. O nedenle özellikle DVR’li cihaz aldığınızda mevcut sisteme çanaktan itibaren hiçbir yeni kablo ilavesi gerektirmemesi büyük çok büyük kolaylık sağlamaktadır.

Unicable nasıl çalışır?

Unicable LNB’lerin Ku bandı uydu sinyallerini alışı aynen daha önceki üniversal LNB’ler gibidir. Düşey üst bant, yatay üst bant, düşey alt bant ve yatay alt bant olmak üzere 4 farklı geliş frekans bandındaki uydu yayınlarını alır. Yüksek alış hassasiyetini sağlamak üzere düşük gürültü yükselticileri üzerinden sinyaller düşük ve yüksek bantların yerel osilatörleriyle L- bandına indirilir.

Daha sonra sinyaller matris halinde farklı SCR çipleri üzerine multipleks(çoklama) edilir. SCR çipleri özel mikrokontrolcusunun mantığına ve DiSEqC standardına göre her receiver başına istenen kanalı(gelen sinyallerin içinden) seçip ara frekans(IF) kanal frekanslarından birine indirir. Sinyal orada daha sonra süzülüp uygun kazanç seviyesiyle kablodaki diğer sinyallerin arasına katıştırılır.

SCR(tek kanal yönlendirici) LNB de denilen Unicable LNB’ler aslında bir anlamda farklı kullanıcıların ayni anda talep ettikleri farklı sinyallere göre kendi IF çıkışlarını sürekli yeniden düzenleyebilen bir mini “”kanal yönlendiricisi”” olarak tanımlanabilir. Bir unicable LNB’nin prensip şeması aşağıdaki şekilde verilmiştir.

Bir Unicable LNB’ye kaç farklı kullanıcı bağlanabilir? 

Unicable LNB ayni anda 4 farklı kullanıcıya hizmet edebilir. Aslında tek kablo üzerinden daha fazla sayıda tüner beslenebilir kuşkusuz. Ancak ayni anda bunlardan sadece 4 tanesi diğerlerinden bağımsız olarak uydudaki tüm sinyallerinden istediklerini seçebilir.

Standart geleneksel alıcı cihazlarında tek tüner bulunur. O nedenle örneğin unicable kablonun dağıtıldığı evin 4 farklı odasındaki 4 alıcı cihaz uydudaki tüm kanalları birbirinden bağımsız olarak ayni anda izleyebilir. Öte yandan dijital görüntü kaydedicili cihazlarda bazen çift tüner bulunmaktadır. Ekran ekran içine farklı kanalları göstermek veya birini izleyip öbürünü kaydetmek gibi amaçları destekleyen bu durumlarda tek alıcı cihazın içinde bulunan bu ikinci tüner farklı bir kullanıcı sayılır. Ancak, genellikle toplam dörtten daha fazla tüner de olsa ayni anda bunlardan dörtten fazlasının seçim yapması genellikle olasılığı düşüktür.

Unicable kullanmanın özel gereksinimleri nelerdir?

Montajda sadece iki gereksinim vardır. Birincisi….(eğer mevcut bir tesisat dönüştürülüyor ise) tek yönlü splitterların(varsa) sistemden sökülmesi gerekir. Çünkü Unicable ile sadece her iki yöne geçiren Splitter’lar kullanılır. Eğer kablonun dallara ayrılması gerekiyor ise düşük maliyetli aktif birleştiriciler kullanılmalıdır. İkincisi… kablo kalitesine ve uzunluğuna bağlı olarak (eğer 35m’den uzun kablo gerekiyorsa) kablonun herhangi bir yerinden ucuz bir yükseltici bağlanması gerekebilir. Bu gereksinimler tek kablonun sağladığı avantajların yanında önemsiz kalmaktadır.

unicable_lnb_02

LNBF / FLANSLI LNB

Küçük boyutlu “offset” çanaklarda genellikle feedin LNB’nin ayrılmaz şekilde tümleşik bir parçası olduğu LNBF kullanılır. Çanağa tek parca LNBF takılıp ucuna kablo bağlandığından feedin içini görmek de bilmek de gerekmez (su geçirmez şekilde kapatılmıştır). Bilmemiz gereken tek şey çanağımıza ve almak istediğimiz yayınlara uygun offset feedli bir LNBF olduğudur. Bu LNB’lerdeki feed yapısı sadece lineer (V / H) yayınları almaya uygun özelliktedir.

Kendinden feedli LNB = LNBF çeşitleri

Daha büyük çaplı parabol (prime-focus) çanaklarda ise “feed” genellikle çanakla birlikte satılır. Çanağa uygun bir feed kullandığınızdan emin olabilmeniz için bu gereklidir. O yüzden çanakla birlikte aldığınız feed satın alacagınız flansli LNB ‘ye takabilmeniz için tam doğru standart ölçüde vida delikleri bulunan bir flansa sahiptir. Eger lineer Ku bir LNB kullanacaksanız çanakla birlikte verilen feed genellikle size uyar. Eger amacınız C bandı veya dairesel polarizeli yayınları almak ise o zaman farkli bir feed kullanmanız gerekir. Böyle bir feed genellikle çanağınızla birlikte verilmez ayrıca temin etmeniz gerekir ve bu durumda da çanağınıza uyumu önemli hale gelir. Özelikle bilmeniz gereken şey feedlerin farklı dalga klavuzu boylarına sahip olduğu ve antenin kelepçesine bağladığınızda bilmeden odak uzaklığını değiştirebileceginizdir. Çanak üreticinizin bildirdiği odak uzaklığı ölçüsü genellikle feed agzından çanak dibine ölçülür. Bir feedi kullanabileceginizden emin olmak için kelepçeye bağladıktan sonra ağızdan çanak dibine ölçtüğünüzde canağınızın 94.3mm şeklinde verilen odak uzaklığına milimetrik olarak bulabilmeniz gerekir. Feedi ileri geri hareket ettirerek sinyal siddetini maksimum olarak yakaladığınız konum çubuk boyu ayarlarıyla elde edilebilmelidir. Ayrıca kelepçe düzeni feedinizin boynuyla sorunsuz ayarlama ve sabitleme yapilabilmesine uygun şekilde olmalıdır.

Flanşlı (Feedsiz) LNB çesitleri.

Uygun özellikte feed ağız kısmına vidalanarak kullanılır.
Feed’in hemen arkasına vidalarla bağlanan flanşlı LNB’ nin beklenen özellikler ve iç yapısı bakımından LNBF den farkı yoktur. Yükseltici ve Konvertör kademelerinden oluşur. Eskiden (ve halen bazı profesyonel sistemlerde) LNA yükseltici kademesiyle LNC konvertör kademesi birbirine bağlanan ayrı modüller olarak bulunmaktadır. Ancak bugün LNB dendiğinde de LNC dendiğinde de tümleşik yükselticili konvertör aklımıza gelmektedir. LNA (Low Noise Amplifier) denilen yükseltici kısmi probuna kadar gelen mikrodalgayı elektrik akımı halinde gürültüsüz yükseltmek işlevine sahiptir. Bu işi görürken sinyale olabildiğince az gürültü katılmasi beklenir. NF (gürültü değerinin dB veya K değeri) sinyal/gürültü oranı düşük olan LNB’ ler tercih edilir. Aslında Ku bandı LNB’ lerde genellikle Noise Figure (dB) ile, C bandı LNBlerde ise Noise Temperature (Kelvin) olarak ifade edilen bu değer tüm sistemin etkinliği demek olan C/N (taşıyıcı sinyal seviyesinin gürültüye oranı) içinde çok da önemli olmayan bir paya sahiptir. Yayının EIRP (dBW) değeri, çanağın çapı, etkinliği, gürültü ısısı, sistemin gürültü değeri, bant genişliği gibi birçok değerin içinde bu değer de belirli ölçüde etkinliğe sahiptir. Bu değerlerin toplam etkinlik hesapları içinde göreceli yerini daha iyi anlayabilmek için önde gelen LNB üreticisi SMW nin bedava yüklenen yeni versiyon SMWLINK3 programını mutlaka çekmenizi öneriyorum. Ancak daha önceki 2. versiyonu da özellikle çok odaklı (multifocus) antenlere ilişkin hesap programları nedeniyle gerçekten görmeğe değer. (Ben sizin yerinize olsam her ikisini de çekerdim). Türkiyede önceleri 1.7-1.8 değerli LNB’ ler kullanılırken teknolojinin gelişmesi sonucu su anda en yaygın olarak kullanılan LNB’ ler 0.7- 0.8 dB gürültü faktörüne sahiptir. 0.6 ile 0.5 dB özellikte olanlar da bulunabilmektedir. Çok düşük gürültü değerine sahip LNB’ lerin göreceli fiyatı çoğu zaman sağladığı yarardan fazla yüksektir. Üstelik kuşkusuz bir LNB’ nin değerini olusturan parametreler cok daha fazla ve değişiktir. Örnegin bir LNB ‘nin calışması gereken çok farklı ortam sıcaklıklarında bazı özelliklerinin değişip değişmemesi (temperature stability), ve osilatörünün faz gürültüsü (phase noise) özellikle veri aktarımlarında çok önemli olmaktadır. Örneğin çalışılan tüm farklı ortam sıcaklıkları içinde lokal osilatör stabilitesinin +/- 150, +/- 25 veya +/- 10 kHz mertebelerinde tanımlanabilmesi PLL li osilatörle sağlanan bir sonuçtur ve bu tip LNB’ ler özellikle pahalıdır.( +/- 3 MHz iyi bir degerdir) Osilatör faz gürültüsü 1KHz den itibaren yapılabilmektedir.(-75 dBc@10 kHz typ iyi bir değerdir). Bu ise aktarımda gerçekten düşük BER (Bit Error Rate) sağlanabilmesi sonucunu vermektedir. Farklı frekanslarda kazanç değişiminin engellenmesi de önemlidir örneğin iyi bir LNB’ de bu özellik 30MHzde 0.3dB dolayında olmaktadır. çıkış SWR’si “en cok 2:1″ gibi bir değerle ifade edilir . Hemen tüm LNB tiplerinde cikis empedansı 75 ohm ve F tipi konnektör olarak standartlasmış gibidir. Giriş kısmında iki doğrusal polarite için gerilim kontroluyla seçilebilen V=14V, H=18V çift problu “switchable” tip de Ku bandı için artık standartlaşmış kabul edilebilir. Halen Standard Ku LNB denilince akla 10.0 GHz lokal osilatörlü “Marconi switching(V/H) LNB gelmektedir. Bu tip LNB 12.5v – 14.5v besleme gerilimini vertikal(dikey),15.5 – 18v besleme gerilimini ise horizontal(yatay) polarite seçimi kabul etmektedir. Daha sonra ortaya çıkan ve “Enhanced” LNB denilen tipin bundan farkı lokal osilatör frekansının 9.75 GHz olmasıdır. Ama bu da tek bantlıdır ve sadece 10.7-11.7 GHz. aralığında 2 GHz tunerli uydu alıcılarıyla calışır ve Astra 1A-D arası uydular için düşünülmüştür. Daha sonra ve özellikle digital yayınların başladığı son yıllarda ortaya çıkan ve yeni kullanıma açılan 11.7 GHZ üstü frekanstaki yayınları da alabilmek üzere gerekli sisteme sahip “Universal” LNB ortaya çıktı. Bu LNB’ lerin farkı çift lokal osilatör (9.75 and 10.60 GHz L.O) kullanılması ve birincisi 10.7 – 11.8 ve ikincisi 11.6 – 12.7 GHz olan iki bant arasında uydu alıcısından gönderilen 22 kHz sinyaliyle seçim yapılabilmesiydi. Artık hemen tüm avrupa uydularında üst bant yayınlar kullanıma açıldığından bu 4 bantlı (Quad Band) sistem standart hale gelmiştir. Bu arada kullanılan uydu alıcıları da 2.15GHz tunerli olmuşlardır. Tarama sahası daha az olan uydu alıcıları arada boşluk kaldığı için bazı yayınları alamayabilir. Alt üst bant geçişi için bu LNB bir 22kHz (0.5v p-p) sinyale gerek duyar ve bunu gördüğünde lokal osilatörünü 10.6GHz (“üst banda”) geçirir ve aksi halde hep 9.75GHz osilatörünü kullanarak sadece alt banttaki yayınları alır. V/H polarite algılaması yukarıda anlatılan eski Marconi LNB tipindekiyle aynıdır.

05 Kas 2013

LNB Çeşitleri

STACK (MDU) LNB

Bu LNB’ nin giriş frekans aralığı 11.470 – 11.680 GHz, çıkış frekansları da RF (UHF’nin pek kulanılmayan üst bandlarındadır). LNB uydudan gelen yayınların “V(dikey)” olanlarını 505 – 715 MHz, “H(yatay)” olanlarını da 765 – 845 MHz arası bir bandına indirmekte. Kazancı 50 – 63dB’ dir. Bu LNB ile birlikte kullanilabilecek bir de “up converter” vardır. Bununla LNB’den 505 – 845 MHz arasındaki bant 1715 – 2055 MHz arasına yükseltiliyor. Böylece uydu alıcısı yayınları aynen normal LNB’ den gelenler gibi görmektedir. Konvertörün diğer çıkışından da kablodaki diğer (RF) yayınlar alınması sağlanıyor. Böylece en kötü kalite koaksiyel kablo ile en uzun mesafeye LNB’ den gelen uydu yayınları kolayca taşınabilmektedir.

FEED

Önde “feed” denilen yakın yerlerden yansıyıp gelen istenmeyen mikrodalgaları süzen, diğerlerini toplayıp yükselticinin probuna gönderen yuvarlak parçadır. Feed kısmı prensip olarak bir dalga klavuzu ile yansıtıcıdan oluşur. Yansıtıcı ağız kısmı yan açılardan gelip oluklu kısmın içine düşen dalgaları gönderir. Konsantrik (eş merkezli) dairesel duvarlar içeren ağız kısmı bu işlevini uygun şekilde yerine getirebilmesi için de çanağın şekline(parabol) uygun bir dairedir. Oluk duvarların derinliği çanağın odak uzaklığının çapına oranı (f/D) özelliğine göre hesaplandığından aynı tipte ve çaptaki çanaklardan daha çukur veya daha düz özellikte olanları için farklı ölçülerde olacaktır. Prime-focus (parabol) antenlerde kullanılan feedlerde bu duvarlar aynı düzlemdedir. Offset antenler için olan feedlerde ise dıştan içe doğru derinleşir geometridedir. Feed içinin yuvarlak olması her polarizasyonda gelen dalgayı aynen taşıyan bir dalga klavuzu olmasındandır. (Köşeli olsa idi sadece düzlem yüzeylerine uygun polaritede gelen dalgaları taşıyabilirdi). O yüzden yuvarlak ağız kısmının içine düşen ayakta duran mikrodalga (standing wave) bağlanacak LNB’ nin probuna verilmek istenen polariteye uygun polarma yapılarak doğrudan iletilir. Feed’in önemli kalite özelliklerinden birisi “polarizasyon yalıtımıdır (cross polar discrimination=polarizati on isolation)”. Yani bu polarmayı yaparken karşı polariteden de sızma olmayacak (örneğin 25dB polarma yalıtımlı) mekanik kusursuzluğa sahip olması gerekir. Bu olmazsa öbür polaritedeki benzer frekanslı yayin karışma yapabilir bu da yayının düzgün şekilde alınmasına engel olur. Feedin bir kalite özelliği de gerilim dalga oranı (VSWR) dir. Feedin iç yüzeylerinin geometrik kusursuzluğu verimde önemli olmaktadır. Giriş kısmındaki dairesellik ve örneğin gelen dalgayı polaritesine göre ikiye ayıran bir (orthomode transducer) dalga klavuzunda LNB bağlanan dörtköşe dalga çıkış uçlarında yüzey düzlemliği cok önemlidir.

Dolayısıyla “feed” kısmı kullanılacağı çanağın cinsine(offset /prime focus), çanağın çukur veya düz oluşuna (f/D ölçüsüne), hangi banttaki yayınların alınacağına (C/Ku), alınacak yayınların polaritelerinin doğrusal veya dairesel oluşuna ve tek çıkışlı çok çıkışlı, polarizörlü polarizörsüz oluşuna göre çok farklı özellik ve tiplerde olur. Ayrıca çanak çapı çok büyüdükçe feedin oluklu ağız kısmının çapının da biraz büyümesi beklenir. Hem dairesel hem doğrusal yayınları alabilen feedlerin içinde depolarizör denilen ve dairesel (R/L) polarizeli dalgayi doğrusal düzlemlerden (V/H) birine aktaran ve (çeyrek dalga boyunun 6mm dolayında olduğu ve yüzde 1-2 hassasiyet gerektiği düşünülürse) mekanik olarak 0.1 mm hassasiyetle işlenmiş bir teflon levha bulunur. Depolarizör dışında mekanik bir polarotörle kutupları 45 derece döndürmek de ayrıca gerekir. Servosuz bir feedle bu mümkün değildir.

Ku bandındaki hem dogrusal (V/H) hem de dairesel (RHC/LHC) yayinlari alabilmekte kullanilan servomotorlu bir offset anten feedi. Bu feedin polarizasyon yalitimi 25dB, VSWR bandın tümü için ortalama 1.45 (alt bant icin ayri üst bant icin ayri modelleri mevcut. feed alt+üst bant üniversal kullanılmıyor).

LNBF / FLANSLI LNB

Küçük boyutlu “offset” çanaklarda genellikle feedin LNB’nin ayrılmaz şekilde tümleşik bir parçası olduğu LNBF kullanılır. Çanağa tek parca LNBF takılıp ucuna kablo bağlandığından feedin içini görmek de bilmek de gerekmez (su geçirmez şekilde kapatılmıştır). Bilmemiz gereken tek şey çanağımıza ve almak istediğimiz yayınlara uygun offset feedli bir LNBF olduğudur. Bu LNB’lerdeki feed yapısı sadece lineer (V / H) yayınları almaya uygun özelliktedir.

Kendinden feedli LNB = LNBF çeşitleri

Daha büyük çaplı parabol (prime-focus) çanaklarda ise “feed” genellikle çanakla birlikte satılır. Çanağa uygun bir feed kullandığınızdan emin olabilmeniz için bu gereklidir. O yüzden çanakla birlikte aldığınız feed satın alacagınız flansli LNB ‘ye takabilmeniz için tam doğru standart ölçüde vida delikleri bulunan bir flansa sahiptir. Eger lineer Ku bir LNB kullanacaksanız çanakla birlikte verilen feed genellikle size uyar. Eger amacınız C bandı veya dairesel polarizeli yayınları almak ise o zaman farkli bir feed kullanmanız gerekir. Böyle bir feed genellikle çanağınızla birlikte verilmez ayrıca temin etmeniz gerekir ve bu durumda da çanağınıza uyumu önemli hale gelir. Özelikle bilmeniz gereken şey feedlerin farklı dalga klavuzu boylarına sahip olduğu ve antenin kelepçesine bağladığınızda bilmeden odak uzaklığını değiştirebileceginizdir. Çanak üreticinizin bildirdiği odak uzaklığı ölçüsü genellikle feed agzından çanak dibine ölçülür. Bir feedi kullanabileceginizden emin olmak için kelepçeye bağladıktan sonra ağızdan çanak dibine ölçtüğünüzde canağınızın 94.3mm şeklinde verilen odak uzaklığına milimetrik olarak bulabilmeniz gerekir. Feedi ileri geri hareket ettirerek sinyal siddetini maksimum olarak yakaladığınız konum çubuk boyu ayarlarıyla elde edilebilmelidir. Ayrıca kelepçe düzeni feedinizin boynuyla sorunsuz ayarlama ve sabitleme yapilabilmesine uygun şekilde olmalıdır.

Flanşlı (Feedsiz) LNB çeşitleri

Uygun özellikte feed ağız kısmına vidalanarak kullanılır.
Feed’in hemen arkasına vidalarla bağlanan flanşlı LNB’ nin beklenen özellikler ve iç yapısı bakımından LNBF den farkı yoktur. Yükseltici ve Konvertör kademelerinden oluşur. Eskiden (ve halen bazı profesyonel sistemlerde) LNA yükseltici kademesiyle LNC konvertör kademesi birbirine bağlanan ayrı modüller olarak bulunmaktadır. Ancak bugün LNB dendiğinde de LNC dendiğinde de tümleşik yükselticili konvertör aklımıza gelmektedir. LNA (Low Noise Amplifier) denilen yükseltici kısmi probuna kadar gelen mikrodalgayı elektrik akımı halinde gürültüsüz yükseltmek işlevine sahiptir. Bu işi görürken sinyale olabildiğince az gürültü katılmasi beklenir. NF (gürültü değerinin dB veya K değeri) sinyal/gürültü oranı düşük olan LNB’ ler tercih edilir. Aslında Ku bandı LNB’ lerde genellikle Noise Figure (dB) ile, C bandı LNBlerde ise Noise Temperature (Kelvin) olarak ifade edilen bu değer tüm sistemin etkinliği demek olan C/N (taşıyıcı sinyal seviyesinin gürültüye oranı) içinde çok da önemli olmayan bir paya sahiptir. Yayının EIRP (dBW) değeri, çanağın çapı, etkinliği, gürültü ısısı, sistemin gürültü değeri, bant genişliği gibi birçok değerin içinde bu değer de belirli ölçüde etkinliğe sahiptir. Bu değerlerin toplam etkinlik hesapları içinde göreceli yerini daha iyi anlayabilmek için önde gelen LNB üreticisi SMW nin bedava yüklenen yeni versiyon SMWLINK3 programını mutlaka çekmenizi öneriyorum. Ancak daha önceki 2. versiyonu da özellikle çok odaklı (multifocus) antenlere ilişkin hesap programları nedeniyle gerçekten görmeğe değer. (Ben sizin yerinize olsam her ikisini de çekerdim). Türkiyede önceleri 1.7-1.8 değerli LNB’ ler kullanılırken teknolojinin gelişmesi sonucu su anda en yaygın olarak kullanılan LNB’ ler 0.7- 0.8 dB gürültü faktörüne sahiptir. 0.6 ile 0.5 dB özellikte olanlar da bulunabilmektedir. Çok düşük gürültü değerine sahip LNB’ lerin göreceli fiyatı çoğu zaman sağladığı yarardan fazla yüksektir. Üstelik kuşkusuz bir LNB’ nin değerini olusturan parametreler cok daha fazla ve değişiktir. Örnegin bir LNB ‘nin calışması gereken çok farklı ortam sıcaklıklarında bazı özelliklerinin değişip değişmemesi (temperature stability), ve osilatörünün faz gürültüsü (phase noise) özellikle veri aktarımlarında çok önemli olmaktadır. Örneğin çalışılan tüm farklı ortam sıcaklıkları içinde lokal osilatör stabilitesinin +/- 150, +/- 25 veya +/- 10 kHz mertebelerinde tanımlanabilmesi PLL li osilatörle sağlanan bir sonuçtur ve bu tip LNB’ ler özellikle pahalıdır.( +/- 3 MHz iyi bir degerdir) Osilatör faz gürültüsü 1KHz den itibaren yapılabilmektedir.(-75 dBc@10 kHz typ iyi bir değerdir). Bu ise aktarımda gerçekten düşük BER (Bit Error Rate) sağlanabilmesi sonucunu vermektedir. Farklı frekanslarda kazanç değişiminin engellenmesi de önemlidir örneğin iyi bir LNB’ de bu özellik 30MHzde 0.3dB dolayında olmaktadır. çıkış SWR’si “en cok 2:1″ gibi bir değerle ifade edilir . Hemen tüm LNB tiplerinde cikis empedansı 75 ohm ve F tipi konnektör olarak standartlasmış gibidir. Giriş kısmında iki doğrusal polarite için gerilim kontroluyla seçilebilen V=14V, H=18V çift problu “switchable” tip de Ku bandı için artık standartlaşmış kabul edilebilir. Halen Standard Ku LNB denilince akla 10.0 GHz lokal osilatörlü “Marconi switching(V/H) LNB gelmektedir. Bu tip LNB 12.5v – 14.5v besleme gerilimini vertikal(dikey),15.5 – 18v besleme gerilimini ise horizontal(yatay) polarite seçimi kabul etmektedir. Daha sonra ortaya çıkan ve “Enhanced” LNB denilen tipin bundan farkı lokal osilatör frekansının 9.75 GHz olmasıdır. Ama bu da tek bantlıdır ve sadece 10.7-11.7 GHz. aralığında 2 GHz tunerli uydu alıcılarıyla calışır ve Astra 1A-D arası uydular için düşünülmüştür. Daha sonra ve özellikle digital yayınların başladığı son yıllarda ortaya çıkan ve yeni kullanıma açılan 11.7 GHZ üstü frekanstaki yayınları da alabilmek üzere gerekli sisteme sahip “Universal” LNB ortaya çıktı. Bu LNB’ lerin farkı çift lokal osilatör (9.75 and 10.60 GHz L.O) kullanılması ve birincisi 10.7 – 11.8 ve ikincisi 11.6 – 12.7 GHz olan iki bant arasında uydu alıcısından gönderilen 22 kHz sinyaliyle seçim yapılabilmesiydi. Artık hemen tüm avrupa uydularında üst bant yayınlar kullanıma açıldığından bu 4 bantlı (Quad Band) sistem standart hale gelmiştir. Bu arada kullanılan uydu alıcıları da 2.15GHz tunerli olmuşlardır. Tarama sahası daha az olan uydu alıcıları arada boşluk kaldığı için bazı yayınları alamayabilir. Alt üst bant geçişi için bu LNB bir 22kHz (0.5v p-p) sinyale gerek duyar ve bunu gördüğünde lokal osilatörünü 10.6GHz (“üst banda”) geçirir ve aksi halde hep 9.75GHz osilatörünü kullanarak sadece alt banttaki yayınları alır. V/H polarite algılaması yukarıda anlatılan eski Marconi LNB tipindekiyle aynıdır.

(L.O.) Local Oscillator (yerel osilatör) frekansı nedir?

LNB nin esas bir işinin de uydudan gelen frekansı düşürmek (down conversion) olduğunu biliyorsunuz. Çünkü kablolarımız 2GHz üstünde frekansları taşımakta çok isteksizdir. Uydu alıcılarındaki eski tip tunerler 1.75GHz ‘e kadar yenileri ise 2.15GHz frekans üst sınırına sahiptirler. LNB frekans düşürme işlemini uydu sinyal frekansından belirli bir frekans değerini “çıkartarak” yapar. Bu değere LNB’ nin “Lokal Osilatör” frekansı ya da (“LO”) ‘su denir. Örneğin uydu alıcınızdaki tunerin üst sınırı 1.75 ise ve almak istediğiniz en üst uydu frekansı 12.6 GHz ise LNB’nizin L.O. su 10.85 olmalıdır. L.O.su 10.25 ise LNB’ niz 12GHz frekanslı bir uydu yayınını (12GHz – 10.25GHz = 1.75GHz) uydu alıcınıza üst sınırı olan 1.75GHz frekansında gönderecektir. Farklı LNB tipleriyle ve uydu alıcılarla belirli frekanstaki yayını doğru alamama sorunu aslında basit hesapla açıklığa kavuşturulabilir. Simdi bizim bölgemizde geçerli olan Ku bandı frekansları (Telecom bandı) üst sınırı 12.750 GHz’ dir. Bugün Türkiyede satılan hemen tüm uydu alıcıları da 0.95 – 2.15GHz tunerlidir. Üst bant lokal osilatörü 10.6 olan bir üniversal LNB için taranabilecek frekanslar 2.15 + 10.6 = 12.75GHz bandın en üstüne kadar ulaşabilmektedir. Alt sınır ise 0.95 + 9.75 = 10.700GHz olmaktadır.

Eski tip LNB ve uydu alıcılar… Bu günkü universal LNB ve 0.95 – 2.15GHz tünerli uydu alıcısı standardına ulaşılıncaya kadar yakın geçmişte birçok asamada ürünler ortaya çıkmıştır. Örneğin bugün bizim için artık geçerli olmayan eski tip bir alicinin tüneri 0.95 – 1.75GHz dır. Bu alıcı bir “FSS” LNB (10.0 GHz L.O.) ile kullanılırsa bulunubilecek kanal bant 10.9 – 11.7GHz arasıyla sınırlıdır. Eğer bir “DBS” LNB (10.75 GHz L.O.) kullanılırsa 11.7 – 12.5 GHz arası taranabilir. Sonuçta böyle iki tane LNB + bir tane Orthomode transducer + bir tane de 22KHz sviç bugünkü universal LNB ile sağlanan sonucu (biraz eksik olarak da olsa) vermektedir. Eskiden 0.95 – 1.75GHz tunerli alıcılarla çalışmak üzere tasarlanmis böyle birçok çeşit LNB bulunmaktadır. “Telecom” LNB (11.0 GHz L.O.) bunlardan bir diğeridir. 11.95 – 12.75 GHz bandında kullanilabilir. Voltaj (V/H) anahtarlaması bulunur. Voltaj anahtarlamasıyla üst banda geçirilen iki bantlı “Dual band” LNB de 0.95 – 1.75GHz tunerli alıcılarla 10.9 – 11.7 ve 11.7 – 12.5 GHz olmak üzere her iki banttan da yayın alabilir.Bu LNB ile alınamayan üst bant kısımları için “Tripleband” LNB geliştirilmiştir. Bu LNB 0.95 – 2.0 GHz tuner ile 10.9-11.8 ve 11.8-12.75 GHz arasindaki yayınları alabilir. Alamadığı en alt banttaki yayınları da alabilmek üzere “Quadband” LNB geliştirilmiştir. Bu LNB 0.95 – 2.05 GHz tuner kullaılarak 10.7-11.8 ve 11.7-12.8 GHz olmak üzere bugünkü bandın tümünü alabilir. Bu eski tip LNB’lerin coğu flanşlı (ayrıca feed vidalanan) tiptedirler ve gürültü değerleri en eski tiplerde 3.0 dB’ ye kadar çıkmaktadır. (Bu gün ortalama 0.8dB yaygındır).

Çok girişli (multifocus) ve cok çıkışlı LNB’ ler…

Halen avrupada en yaygın olarak kullanılan Astra + Hotbird başta olmak üzere birbirine yakın 2 uydunun yayınlarını tek çanakla alabilmek için geliştirilmiş (multifocus) çanak ve LNB ler bulunmaktadır. Monoblok bu LNB aslında 2 feed + 2 universal LNB + DiSEqC sviçten oluşmaktadır ve bir tek F konnektörlü çıkışa sahiptir. Alıcı DiSEqC, 22KHz ve 14/18V besleme seçimlerini kullanarak heriki uydunun toplam 8 polaritesindeki birkaç bin farklı kanal uydu yayınından istediğini seçebilmektedir. Bu tip LNB’ler ancak birbirine sabit mesafedeki öngörüldüğü iki uydu için kullanilabilirler. Degişik mesafedeki uydulardan tek canakla yayin alabilmek için kulanilan ceşitli multifocus uygulamalari bulunur.
Bu tür ve diğer çok çanaklı uygulamalarda kullanılabilmek üzere geliştirilmiş kendinden DiSEqC sviçli bir giriş ve bir çıkış F konnektörü bulunan “geçisli LNB” tipleri vardır.

Bunların dışında 2 çıkış F konnektörü bulunan “Dual” ve “Twin” LNB’ler bulunur. Bunların Standard, Enhanced ve Universal tipleri bulunur. Dual LNB tek bandın tek polaritesini (V-Dikey) bir çıkış tek polaritesini (H-yatay) diğer çıkış sabit olarak verir. Dual ve Twin LNB’lerin dış görünüşleri birbirine çok benzer, ancak örneğin Twin Universal bir LNB nin iki çıkışının herbirinde tek üniversal LNB’de bulunan 4 polarite de bulunur.İcinde aynı feede bağlanarak tek kabinin içine yerlestirilmis 2 tane üniversal LNB bulunur. Böyle bir LNB ile tek canağı paylaşan iki uydu alıcısı iki ayri çanak varmış gibi birbirinden bağımsız olarak tüm kanalları izleyebilirler. Dual LNB ise bir merkezi dağıtımda hem V(dikey), hem de H(yatay) polaritelerini aynı anda dağıtabilmek için kullanılır. Dört çıkışlı LNB’ler de “Quad” ve “Quattro” olmak üzere 2 ana türdedirler ve bunların da Standard, Enhanced ve Universal tipleri bulunur. “Quad” universal LNB bir canagi 4 farklı kullanıcıya birbirinden bagımsız olarak tüm polariteleri izleyebilecekleri şekilde dağıtmakta kullanılır. İçinde ayni feede bağlanarak tek kabinin içine yerleştirilmiş 4 tane üniversal LNB bulunur. “Quattro” LNB ise herbir çıkışından AltV(Dikey), AltH(yatay), üstV(dikey), üstH(yatay) olmak üzere 4 farkli polariteyi aynı anda vermektedir. Her çıkışında sadece ait olduğu polarite bulunur. Bir merkezi sistemden dağıtım için (headend de) kullanılır.
Aslında, terminoloji bakımından avrupa ile atlantiğin diğer yakası arasında önemli bir fark da var. Amerikada Dish Network’un iki farklı konumdaki uydularındaki tüm yayınları alıp birbirinden bağımsız iki uydu alıcıya verebilen (iki giriş, iki çıkışlı) LNB’ lere TWIN, dört çıkışlı olanlarına Quad deniyor. Tek konumdaki uyduların yayınlarını alıp iki alıcıya verebilen (tek giriş iki çıkışlı) LNB’ lere de DUAL deniyor. İki girişli Monoblok LNB’lerin konumu cok özel olduğundan bu durum pek karışıklık yaratmayabilir, ancak avrupada şimdiden üst bant yayınları olmayan uydu neredeyse kalmadığından tek bantlı V(dikey) ve H(yatay) çıkışları olan “Dual” LNB’ lerin tümüyle demode olduğu söylenebilir. Tüm bunlardan başka sekiz Universal çıkışlı olan “Octal” LNB’ler de üretildi, bu LNB’ ler santrallere alternatif olarak kullanılmaktadır.

05 Kas 2013

Çift Tuner Nedir?

Daha önce sizelere Tuner Nedir? bölümünde tunerden bahsetmiştik. Tuner : Uydudan sinyallerimizi çanağımızın odağında bulunan lnb ile toplayıp koaksiyel kablo bağlantısı ile aldığımız sinyalleri işleyip uydu alıcımızın boarduna aktaran bir parçadır. Anlattığımız bu parçadan 2 adet bulunuyorsa çift tuner denmektedir.

Uydudan yayınlar iki çeşit gelmektedir, V (Vertical-Dikey) ve H (Horizantal-Yatay) dır. Tek tuner cihazlarda aynı uydudan V( Dikey) yayını izlerken V (Dikey) yayın kayıt edebilirsiniz. Çift tuner cihazların avantajı ise bir kanalı kayıt ederken isteğiniz kanalı da izlemenize faydalı olacak bir yapıdır.

05 Kas 2013

Tuner Nedir?

Uydudan gelen sinyalleri çanağımızın odağında bulunan lnb ile toplayıp bunları koaksiyel kablo ile uydu alıcımıza taşırız. Bu LNB den gelen kabloyu uydu alıcımızda bağladığımız aparata tuner denir. Günümüzde uydu alıcılarında bir den çok tuner olabilmekte, ve hatta bazı uydu alıcılarında ise USB tunerler de desteklenmektedir. Örneğin vuplus uydu alıcılarında mevcut uydu tunerleri yanı sıra USB karasal ve USB kablo yayınlarıda desteklenmektedir.

Uydudan yeryüzüne gelen mikrodalga sinyallerin LNB yardımıyla uydu alıcısına ulaşması sağlandıktan sonra, ulaşan sinyallerin işlenmesi sonucu televizyon da görüntüye çevirme işlemini gerçekleştiren cihazlara uydu alıcısı denilmektedir.

Geliştirilen ilk nesil uydu alıcılarına Analog Uydu Alıcıları denilmektedir. Teknolojinin gelişmesiyle birlikte Analog Uydu alıcılarının yerini Dijital Uydu Alıcıları almıştır. Günümüzde ise gelişen yayıncılık teknolojileri sayesinde Dijital HD Uydu Alıcıları tüketicilerin beğenisine sunulmaktadır.

Yeni nesil uydu alıcılarını iki gruba ayırabiliriz:

SD Uydu Alıcısı;

SD (Standart Definition), standart yayın formatında olan yayınları almamızı sağlayan uydu alıcılarına SD uydu alıcısı denilmektedir.

HD Uydu Alıcısı;

HD (High Definition), yüksek çözünürlüklü yayın formatında olan yayınları almamızı sağlayan uydu alıcısına HD uydu alıcısı denilmektedir. Bu yayınları izleyebilmemiz için Televizyonu muzunda HD (High Definition) yüksek çözünürlükte ki yayınlara uygun olması gerekmektedir.

05 Kas 2013

Uydu Nedir?

uydu_01

Dünya etrafında ekvatorun 36.000 km. üzerinde clark belt denilen kuşakta dönüş hızı dünya ile ayni olan ve enerjilerini solar bataryaları ile güneşten sağlayan elektronik cihazların ağırlığını oluşturduğu uzay araçlarıdır.

Uyduların ömürleri yörünge sabitleştirici füzelerindeki yakıt süresi ile ölçülür. Genel olarak birbirinden farklı olan uyduların ömürleri yaklaşık 10 yıldır. Uyduların yakıtı bitince ve işlevini yitirince uydu yörüngesinden çıkarılırlar ve yeni uydu ile değiştirilirler.
İlk defa 1957 yılında uzaya fırlatılan uydu aracı ile başlayan uydu haberleşme yarışı bugün birçok ülkenin iştirak ve rekabeti ile hızlanmıştır. Günümüzde yüzlerce iletişim uydusu uzaydan dünyamıza sürekli sinyaller göndermektedir.

Uyduların baslıca kullanım amaçları:

Uydular, uzaydan yeryüzüne çok yüksek frekanslı (GHz mertebesinde) sinyalleri parabol antenlerle (Transponder) yansıtırlar. Uydular kullanım amaçlarına göre; Telekomünikasyon amaçlı uydular, meteoroloji uyduları, askeri amaçlı uydular, iletişim ( Televizyon – radyo- data yayını ) uyduları şeklinde işlevlerine göre birbirlerinde ayrılırlar. Bunlardan en önemli olanı ve bizi ilgilendireni TV yayını amaçlı olanlardır. Uydular dünyaya değişik bantlar üzerinden sinyal gönderirler. Uydulardan alınan TV yayınları frekans bantları ile tanımlanırlar. Üç tip yayın bandı vardır.

X band yayınları
Frekansları 3 GHz’in altında olan ve genellikle askeri haberleşme amaçları için kullanılan bir yayın türüdür. Bazı uydulardan bu band içinde TV yayınları da verilmektedir. Bu uyduların asıl kullanım amacı; Gemi; yer ve yön tayin sinyallerinin, tele haberleşme sinyallerinin ve diğer askeri sistemlerin kullanıldığı frekans bandıdır.

C band yayınları
3,7 – 4,5 Ghz frekans aralığında kullanılan yayın şekline verilen isimdir

KU Band yayınları
Bu band 10,7 – 12,75 Ghz arası frekans bandlarını kapsar. Televizyon yayınlarının büyük bölümü bu banddan yapılır.

05 Kas 2013

LNB Nedir?

Düşük Gürültü Kütlesi – LNB (Low Noise Block)

Uydu yayınlarını alabilmek için, uydudan antenin odak noktasına gelen yüksek frekanslı sinyallerin üzerinde işlem yapan ilk donanım elemanı LNB’dir.

Uydudan gelen sinyaller önce çanağa gelir, çanak bu sinyalleri odak noktasında toplayarak LNB’ye yansıtır. Çanak, sinyal toplayıcı ve yansıtıcı görevi üstlenir ve topladığı sinyalleri LNB ye gönderir. LNB çanağın odak noktasını ne kadar iyi görürse, o kadar iyi sinyalleri toplar. Daha sonra LNB, bu sinyalleri uydu alıcısının anlayacağı dile çevirir.

LNB’yi içinde elektronik devreler bulunan, dışı bazen metal, bazen plastik ile kaplı sinyal dönüştürücüsü diye tarif edebiliriz. İngilizce LOW NOISE BLOCK (Düşük Gürültü Kütlesi) kelimelerinin kısaltması olan LNB’ye, Low Noise Amplifier (Düşük Gürültü Yükseltici) ve Low Noise Converter (Düşük Gürültü Dönüştürücü) diyenler de bulunmaktadır.

Uydudan gelen sinyalin yükseltilmesi ve dönüştürülmesi gerekmektedir. Çanağın topladığı uydu sinyallerini alan LNB, bunları işler, yükseltir ve uydu alıcısına gönderir. Bütün bu işlemleri kablo üzerinden, uydu alıcısından aldığı elektrik gücü ve komutlar ile yapmaktadır. Bu işlem esnasında LNB gürültü üretir. Piyasa da bulunan LNB’lerin (veya kutularının) üzerinde 0.3dB, 0,2dB veya 0,1dB gibi değerler kullanılmaktadır. Bu değerlerin her biri LNB’nin çalışırken ürettiği gürültü seviyesini belirtmektedir. Bu konuda gerçek güvenilir testlerin ve kontrollerin maalesef yapılmadığını gözlemlemekteyiz. Eski uydu hobicileri, geliştirilen teknolojilere rağmen 0.6 dB eşiğinin altında LNB olmadığını iddia etmektedirler.


1 2 3 4 5 6 10
Copyright 2014 DİKEY İLETİŞİM ELEKTRONİK.